
The MAGNeT Toolkit: Design, Implementation, and Evaluation

Jeffrey Hay
�
, Wu-chun Feng

���
, Mark K. Gardner

�
�
jrhay, feng, mkg � @lanl.gov�

Computer & Computational Sciences Division
Los Alamos National Laboratory

Los Alamos, NM 87545�
Department of Computer & Information Science

Ohio State University
Columbus, OH 43210

Abstract—
The current trend in constructing high-performance computing sys-

tems is to connect a large number of machines via a fast interconnect or
a large-scale network such as the Internet. This approach relies on the
performance of the interconnect (or Internet) to enable fast, large-scale
distributed computing. A detailed understanding of the communication
traffic is required in order to optimize the operation of entire system.

Network researchers traditionally monitor traffic in the network to
gain the insight necessary to optimize network operations. Recent work
suggests additional insight can be obtained by also monitoring traffic at
the application level.

The Monitor for Application-Generated Network Traffic toolkit
(MAGNeT) we describe here monitors application traffic patterns in pro-
duction systems, thus enabling more highly optimized networks and inter-
connects for the next generation of high performance computing systems.

Keywords— monitor, measurement, network protocol, traffic characteriza-
tion, TCP, MAGNeT, traces, application-generated traffic, virtual supercom-
puting, network-aware applications, computational grids, high-performance
computing.

I. BACKGROUND

Modern high-performance computing environments, such as
Beowulf -type clusters [1] and the Department of Energy’s Ac-
celerated Strategic Computing Initiative (ASCI) [2], seek to
achieve supercomputer performance by connecting many com-
modity computing nodes via a high-speed network intercon-
nect. Additionally, recent supercomputing research focuses on
building computational grids [3,4] which form a virtual super-
computer from computing facilities at diverse sites, operating
as a single system image by communicating on the Internet. In
both types of systems, the network is a critical system compo-
nent and a potential bottleneck.

Network performance is determined by a combination of the
physical speed of the networking media, the protocols used to
communicate information over that media, and the traffic pat-
terns generated by the applications which use the network. The
physical speed of the network is the upper limit on network
performance, as traffic is unable to travel faster than media

This work was supported by the U.S. Dept. of Energy’s Laboratory-Directed
Research & Development Program and the Los Alamos Computer Science
Institute through Los Alamos National Laboratory contract W-7405-ENG-36.
Any opinions, findings, and conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
DOE, Los Alamos National Laboratory, or the Los Alamos Computer Science
Institute. This paper is Los Alamos Unclassified Report (LA-UR) 01-4843.

limits. However, the operation of network protocols such as
TCP has been shown to place artificial limits on achievable net-
work bandwidth. [5] These limits are caused by the interplay
between the operation of the protocol and the network traffic
required by the application. Thus, in order to improve network
performance, network researchers must have a detailed under-
standing not only of the operation of current protocols, but of
the network requirements of the applications themselves.

Traffic monitors such as tcpdump [6], the CoralReef Soft-
ware Suite [7], and Remote MONitoring (RMON) systems are
valuable tools for obtaining information about active networks.
Information gathered by traffic monitors can be used to verify
the operation of network protocols, or can be combined into
archives, such as the Internet Traffic Archive [8] and the Inter-
net Traffic Data Repository [9], and used to generate models of
global network traffic patterns.

Recent work suggests, however, that traditional traffic mon-
itors miss a valuable part of the available information. [10–12]
Specifically, the tools capture traffic on the wire (or in the net-
work) rather than at the application level. Thus, the traffic an
application sends to the network is captured only after hav-
ing passed through a protocol stack (e.g., TCP/IP) and into the
network. Consequently, these tools cannot provide protocol-
independent insight into the traffic patterns of an application.

To determine application traffic patterns before being mod-
ulated by a protocol stack, as well as to determine the modula-
tion caused by each layer of a protocol stack, we present the
Monitor for Application-Generated Network Traffic (MAG-
NeT). The MAGNeT toolkit captures traffic (1) generated by
applications, (2) passing through each layer of the protocol
stack (e.g., from TCP to IP), and (3) entering and leaving the
network. MAGNeT differs from existing tools in that traffic is
monitored not only upon entering and leaving the network, but
also throughout the entire network protocol stack, including
at the application layer. Hence, MAGNeT provides network
developers with information necessary to improve the perfor-
mance of future supercomputers.

In this paper, we present the overall design of MAGNeT and
discuss implementation details of our MAGNeT toolkit. We
also present an evaluation of the performance of the MAGNeT
toolkit, and conclude with some example uses for such a tool.

Appeared in proceedings of 2nd Los Alamos Computer Science Institute Symposium (LACSI 2001),
Santa Fe NM, October 15-18 2001.

Data Link

IP

TCP

Application

{MAGNeT

Network

TCP Kernel Monitor

tcpdump

RMON

Fig. 1. Monitoring Points of Various Tools

A. Related Work

MAGNeT is a software-only solution to the problem of mon-
itoring application-level network traffic. As Figure 1 shows,
MAGNeT differs from tcpdump-like and RMON tools in that
it makes fine-grained measurements throughout the entire pro-
tocol stack, not just at the network wire level. We are aware of
two tools similar in nature to the MAGNeT toolkit.

One alternative is Pittsburgh Supercomputing Center’s TCP
kernel monitor [13]. MAGNeT differs from the TCP kernel
monitor in three ways. First, MAGNeT can be used anywhere
in the protocol stack, not just for monitoring TCP. Second,
MAGNeT monitors a superset of the data that the TCP ker-
nel monitor does. And third, MAGNeT runs on Linux whereas
PSC’s TCP kernel monitor works on NetBSD.

Bolliger and Gross describe a method of extracting network
bandwidth information per TCP connection under BSD. [14]
While their research tool appears to have a similar architecture
to MAGNeT, their application is limited in scope, as it only
records the specific information needed to compute estimated
bandwidth for TCP connections. In addition, their tool does not
appear to be publicly available, whereas we intend for MAG-
NeT to be included in the toolbox of every network researcher.

II. MAGNET DESIGN

The fundamental vision of the MAGNeT toolkit is to cap-
ture application-level network traffic patterns. To be of max-
imum benefit, MAGNeT traces must capture the behavior of
real-world applications (i.e., monitoring simulated applications
is of little benefit). In addition, no application modification or
special user actions should be required.

To obtain this level of transparency, the MAGNeT toolkit
must either perform its work within the communication li-
brary linked against the application or within the operating
system (OS) kernel. Working in the communication library
requires each monitored application to be re-compiled or re-
linked against a MAGNeT-ized library. On the other hand,
working in the OS kernel allows any existing application to be
monitored. Placing MAGNeT in the OS kernel also allows it
to record protocol level transitions (e.g., when a data packet is
passed from TCP to IP), as well as network protocol state vari-
ables. Due to these factors, the MAGNeT toolkit is designed as

IP

Kernel User

kernel
buffer

magnet_add() magnet_read

Disk

send()

recv()

application

TCP

Network

UDP...

Fig. 2. Overview of MAGNeT Operation

a series of modifications to the OS kernel’s networking stack.
The modified OS provides hooks throughout the protocol

stack to call a MAGNeT data recording procedure. The hooks
provide access to each layer of the stack, from the send()
and recv() calls to the network device. Thus, the kernel
hooks allow applications to run completely unmodified (since
all changes are in the OS) and yet capture data throughout the
protocol stack, including true application traffic patterns.

Also desirable is the ability to export collected data to user
space in real time. Having run-time data available to appli-
cations allows for the development of network-aware appli-
cations. Recent work, including that performed by Bolliger
and Gross [14], suggest that if applications know the run-time
state of the network, they may better tune their network use to
achieve maximum performance. MAGNeT records the type of
information that is of interest to network-aware applications,
and hence facilitates the development of these applications.

The flow of data in MAGNeT is shown in Figure 2. Ap-
plications run in the normal manner. These applications make
send() and recv() system calls during the course of their
execution. These calls eventually make use of TCP, IP, or other
protocols to transfer data to and from the network. For systems
running MAGNeT, each time a network protocol event oc-
curs, the kernel makes a call to the MAGNeT recording proce-
dure (which in our implementation is called magnet add()).
This procedure saves data to a circular buffer in kernel space,
which is then saved to disk by a MAGNeT user-level appli-
cation program (in our implementation this program is called
magnet-read).

A. MAGNeT Timestamps

To accurately gauge the amount of time spent in protocol
stack layers, MAGNeT requires high-fidelity timing. To this
end, events are timestamped by MAGNeT using the highest-
resolution time source available. On most systems, the source
with the highest resolution is the CPU cycle counter, which
increments on each CPU clock tick. If the speed of the CPU
clock is known, then the difference between two cycle counts
can be converted to elapsed time.

Wait For
Event to
Occur

Slot Empty?

Save Event

Mark Slot As
Not Empty

Yes

Increment Lost Event
Count

No

Lost Event Count
Equal to 0?

Yes

Save Lost Events
Count

Mark Slot As Not
Empty

No

Set Lost Event Count
to 0

Go To Next Slot

Fig. 3. MAGNeT Kernel Operation

B. User/Kernel Interface and Synchronization

The MAGNeT additions to the kernel export a circular buffer
to user-space via shared memory. Because the kernel and user
processes access the same area of physical memory, MAG-
NeT provides a means of synchronization between the two pro-
cesses. This is accomplished by using a field of the instrumen-
tation record as a synchronization flag between the MAGNeT
user and kernel processes, as shown in Figures 3 and 4.

Before writing to a slot in the circular buffer, MAGNeT ker-
nel code checks the synchronization field for that slot. If the
field indicates that the slot has not yet been copied to user
space, the kernel buffer is full. In this case, the kernel code
increments a count of the number of instrumentation records
that could not be saved due to the buffer being full. Other-
wise, the kernel code writes a new instrumentation record and
advances to the next slot in the circular buffer.

The user application accesses the same circular buffer via
kernel-user shared memory. When the synchronization field
at the current slot indicates the slot is ready to be copied to
user space, the application reads the entire record and resets the
synchronization field to signal the kernel that the slot is once
again available. The application then advances to the next slot
in the circular buffer.

When the kernel has a non-zero count of unsaved events and
buffer space becomes available, the kernel writes a special in-
strumentation record to report the number of instrumentation
records that were not recorded. Thus, during post-processing
of the data, the fact that events were lost is detected at the ap-
propriate chronological place within the data stream.

Slot Empty?

Save Event
(from buffer,

to disk)

No

Mark Slot As Empty

Go To Next Slot

Yes

Fig. 4. MAGNeT User Operation

III. MAGNET IMPLEMENTATION

We now discuss our implementation of the design principles
outlined in section II. Due to our desire to monitor a large sub-
set of our computing environment, we base our implementation
on the Linux 2.4-series kernel. Our MAGNeT toolkit software
distribution consists of a patchfile for the Linux kernel, three
user-interface application programs, and a pair of scripts to au-
tomate distributed data collection.

A. MAGNeT-izing the Kernel

The primary changes to the Linux kernel to implement
MAGNeT involve pinning a large area of physical memory
for the circular buffer, exporting this buffer to user-space via
shared memory, and writing instrumentation records to the
buffer as packets progress through the kernel’s protocol stack.
Code to perform all these steps is located in the new kernel
source file net/magnet/magnet.c.

The pinned circular buffer can be configured to any desired
size. The default buffer size is 256KB. Increasing the size of
the buffer uses more physical memory but reduces the potential
for lost events. A full analysis of the effects of buffer size is
conducted in Section IV-B.3.
magnet add() is the MAGNeT data recording procedure,

which adds a record to the circular buffer. magnet add() is
written to be very lightweight so that it can be called at mul-
tiple points in the protocol stack without inducing a signifi-
cant amount of overhead in the protocol processing. (See Sec-
tion IV-D for an analysis of the cost of magnet add().) The
current distribution instruments the general socket-handling
code, the TCP layer, and the IP layer. Other protocols and lay-
ers may be instrumented by placing calls to magnet add()
at appropriate locations in the code for that protocol or layer.

Linux exports kernel/user shared memory via device files.
That is, the kernel denotes a shared memory segments by a
device file which user-space programs may open. Opening this
file causes Linux to create a shared memory region which can
then be mapped into the application’s address space with the
mmap() system call. With this mapping in place, no additional
kernel code is executed; the application program simply reads
the shared memory and writes it to disk.

struct magnet_data {
void *sockid;
unsigned long long timestamp;
unsigned int event;
int size;
union magnet_ext_data data;

}; /* struct magnet data */

Fig. 5. The MAGNeT Instrumentation Record

A.1 Instrumentation Records

Instrumentation records contain the data which mag-
net add() stores in the buffer for each instrumented event.
Our implementation uses fixed-sized instrumentation records
to minimize the time spent recording individual events. The
file include/linux/magnet.h contains the definition of
our instrumentation record, which is reproduced in Figure 5.
sockid is a unique identifier for each connection stream.1

This allows data traces to be separated into individual streams
during post processing, while protecting the privacy of the ap-
plication and user. The timestamp field contains a CPU cy-
cle count which serves not only to provide time measurements
for MAGNeT traces, but also acts as the synchronization flag
between the user and kernel processes, as described in Section
II-B. (A timestamp of zero indicates the record has been
copied to user-space; a non-zero value indicates the record has
not yet been saved.) The eventfield indicates to what class of
events a particular record belongs. Valid values for the event
field (e.g., MAGNET IP SEND) are given by an enum decla-
ration at the beginning of magnet.h. The size field con-
tains the number of bytes transferred during a specific event.2

The data field (an optional field selected at kernel compila-
tion time) is a union of structures in which information specific
to a particular protocol can be stored, thus providing a mecha-
nism for MAGNeT to record protocol state information along
with event transitions.

A.2 Instrumented Events

In its default configuration (i.e., without the optionally-
compiled data field), our toolkit records only the timestamp
and associated data size for each transition between network
stack layers. That is, MAGNeT will record an event indicating
when the socket handling code receives data from an applica-
tion (and how much data was received), when the TCP layer
receives data from the socket handling code, when the IP layer
receives data from TCP, and, finally, when IP hands the data
off to the network device driver. (A similar set of events is
recorded for the receive pathway.)

With the data field compiled in, MAGNeT records exten-
sive data about the instantaneous state of the protocol being

�

The sockid field contains the physical memory address of the kernel’s
status information for the connection.

�

A negative value in the size field reflects the error code returned by the
function causing the event.

monitored. This data consists of all protocol header informa-
tion as well as run-time protocol state variables which are not
usually available. As an example of the kind of information
stored within the data field, Figure 6 shows the union mem-
bers for TCP and IP events.

A.3 MAGNeT System Information

Our MAGNeT implementation uses the Linux kernel’s
get cycles() function to generate CPU cycle-counter
timestamps. To provide a means of calculating wall-clock time
from the timestamps, the first record stored by our toolkit in the
circular buffer is a record of type MAGNET SYSINFO, whose
size field contains the processor clock speed in KHz.

In addition to providing CPU clock rate information, the
MAGNET SYSINFO instrumentation record also allows MAG-
NeT to be endian-aware. Since this record is guaranteed to be
the first record in the circular buffer every time the MAGNeT
device file is opened, it will be the first record that the user-
application reads and saves to disk. Post processing software
can use the value of the event field of this record to deter-
mine if the trace was saved on a big-, little-, or mixed-endian
machine. Specifically, the MAGNET SYSINFO event type is
defined as the hexadecimal value 01234567. If the first record
read by the data processor has an event field of this value,
no endian translation is necessary. On the other hand, if the
event field contains a different value (e.g., a value of hex-
adecimal 67452301), the file was saved on a machine with a
different endian orientation than the processing machine, so
endian translation is necessary.

A.4 /proc/net/magnet

The /proc/net/magnet file allows user applications to
determine the state of the MAGNeT kernel process. The ex-
istence of this file is proof that the kernel has been MAGNeT-
ized (that is, the MAGNeT code is active in the kernel). Dis-
playing this file yields information such as the major and minor
numbers for the MAGNeT shared memory device file, the size
of the circular buffer, and other information that may be useful
to user-level applications.

A.5 MAGNeT User-level Interface

In our current distribution of MAGNeT, the user-level inter-
face consists of three programs, magnet-read, mkmagnet,
and magnet-parse, along with a pair of scripts to ease au-
tomated traffic trace generation and collection.
magnet-read is the primary means of obtaining MAG-

NeT traffic traces; its function is to read the data from the
kernel’s circular buffer. Our implementation makes use of
the memory-mapped I/O features of the Linux kernel. Linux
memory-mapped I/O requires a file to exist before it is mapped
into memory. We refer to this file as a “binary trace file.” Once
a binary trace file exists, magnet-readmaps this file into its
memory space, and then saves data to the file by simply per-
forming a memory copy between the kernel-user shared mem-

struct magnet_tcp {
/* data from "struct tcp_opt" in

include/net/sock.h */

unsigned short source;
/* TCP source port */
unsigned short dest;
/* TCP destination port */

unsigned long snd_wnd;
/* Expected receiver window */

unsigned long srtt;
/* smothed round trip time << 3 */
unsigned long rto;
/* retransmit timeout */

unsigned long packets_out;
/* Packets which are "in flight" */
unsigned long retrans_out;
/* Retransmitted packets out */

unsigned long snd_ssthresh;
/* Slow start size threshold */
unsigned long snd_cwnd;
/* Sending congestion window */

unsigned long rcv_wnd;
/* Current receiver window */
unsigned long write_seq;
/* Tail+1 of data in send buffer */
unsigned long copied_seq;
/* Head of yet unread data */

/* TCP flags*/
unsigned short fin:1,syn:1,rst:1,

psh:1,ack:1,urg:1,ece:1,cwr:1;
}; /* struct magnet_tcp */

struct magnet_ip {
unsigned char version;
unsigned char tos;
unsigned short id;
unsigned short frag_off;
unsigned char ttl;
unsigned char protocol;

}; /* struct magnet_ip */
Fig. 6. MAGNeT Extended Data for TCP and IP

ory and the memory region mapped to the file. This approach
allows MAGNeT to record data on high-speed networks with
minimal chance of record loss. The mkmagnet application
creates and initializes the binary trace file prior to it being
mapped into memory. The program magnet-parse reads
data collected by magnet-read and dumps a tab-delimited
ASCII trace of the collected data for further processing, per-
forming endian translation as necessary.

The current MAGNeT distribution also includes the two
shell scripts magnet.cron and magnet.copy. These
two scripts allow network administrators to create an auto-
mated application-monitoring environment. magnet.cron,
the overall MAGNeT management script, ensures that the
MAGNeT device file exists and that a binary trace file has
been created by mkmagnet. If invoked while magnet-read
is running, the script terminates the current MAGNeT data
collection session and calls magnet.copy to transfer the
data to a remote archive.3 After all these tasks are com-
pleted, magnet.cron restarts magnet-read to save net-
work events to disk. By design, the management script may
be run periodically (e.g., every midnight) to collect data on a
diverse set of machines without requiring special action by the
users.

IV. MAGNET PERFORMANCE ANALYSIS

In this section, we determine the effect of running our MAG-
NeT implementation via a variety of tests. We compare attain-
able bandwidth and the resultant CPU utilization on a system
running MAGNeT to the same system running tcpdump, as
well as the same system running no monitoring software. We
use this comparison to verify that our implementation of the
MAGNeT toolkit performs application-level monitoring with-
out causing significant variation in the traffic pattern of live
applications, and without appreciably affecting system usage.

A. Experimental Method

To determine the overhead of running MAGNeT, we mea-
sure the maximum data rate and the CPU utilization between a
sender and receiver with and without MAGNeT. For compar-
ison, we also measure the overhead of running tcpdump. In
total, the six configurations shown in Table I are compared.

Our baseline configuration runs between two machines with
stock Linux 2.4.3 kernels. The second configuration uses the
same machines but with the MAGNeT patches installed. Al-
though present in memory, MAGNeT records are not saved to
disk. The third configuration is the same as the second except
magnet-read runs on the receiver to drain the MAGNeT
buffer. The fourth configuration is also the same as the second,
but with magnet-read on the sender. For the fifth and sixth
configurations, tcpdump is run on stock Linux 2.4.3 kernels.

�

Since magnet.copy is not called while magnet-read is running,
the extra traffic produced by the transfer will not be captured by MAGNeT.
This behavior can easily be changed by re-ordering the commands in mag-
net.cron.

Bandwidth Configuration Throughput (Kb/s) Send CPU (%) Receive CPU (%)
100 Mbps Linux 2.4.3 94.14

�
0.00 15.19

�
0.12 33.49

�
0.06

Linux 2.4.3 w/MAGNeT 94.13
�

0.01 16.93
�

0.21 33.45
�

0.06
magnet-read on receiver 90.79

�
0.82 20.73

�
0.29 34.35

�
1.02

magnet-read on sender 90.69
�

0.88 23.69
�

1.73 32.39
�

0.35
tcpdump on receiver 89.39

�
1.48 18.00

�
0.37 59.78

�
0.88

tcpdump on sender 89.04
�

0.84 45.00
�

0.63 31.86
�

0.31
1000 Mbps Linux 2.4.3 459.48

�
1.63 61.03

�
0.30 82.43

�
0.23

Linux 2.4.3 w/MAGNeT 452.46
�

1.82 62.99
�

0.35 82.58
�

0.29
magnet-read on receiver 444.31

�
1.66 62.36

�
0.31 81.96

�
0.28

magnet-read on sender 440.24
�

2.11 63.08
�

0.52 81.10
�

0.37
tcpdump on receiver 290.68

�
15.64 36.05

�
1.98 91.50

�
0.50

tcpdump on sender 343.22
�

18.71 93.17
�

0.45 64.07
�

3.32

TABLE I

MAGNET VS. tcpdump PERFORMANCE

The fifth configuration runs tcpdump on the receiver, while
the sixth runs tcpdump on the sender. All configurations are
tested on both 100Mbps and 1000Mbps Ethernet networks.

We conduct our tests between two identical dual 400MHz
Pentium IIs with NetGear 100Mbps and Alteon 1000Mbps
Ethernet cards. MAGNeT is configured to record application
socket calls as well as TCP and IP events, using the default
256KB kernel buffer to store event records.

As a workload, we use netperf [15] on the sender to sat-
urate the network.4 We minimize the amount of interference
in our measurements by eliminating all other network traffic
and minimizing the number of processes running on the test
machines to netperf and a few essential services.

B. Performance

Although MAGNeT records a different set of information
than tcpdump (i.e., MAGNeT records application and proto-
col stack-level traffic while tcpdump only records network-
wire traffic), we compare performance with tcpdump as the
closest commonly-available tool. Table I lists the performance
of MAGNeT and tcpdump for our tests. Along with the
mean, the width of the 95% confidence interval is given. Fig-
ures 7 and 8 present this data graphically.

By default (and as used in our experiments), tcpdump
stores the first 68 bytes of every packet. As configured, MAG-
NeT stores 96 bytes for each packet.5

B.1 Network Throughput

The kernel-resident portion of MAGNeT executes whether
information is being saved to disk or not. The first data point
in Figure 7, labeled “MAGNeT,” shows virtually no penalty
when data is not being saved to disk. The next two data points
�
The command used was “netperf -P 0 -c � local CPU index �

-C � remote CPU index � -H � hostname � ”�
Although MAGNeT’s record size is only 24 bytes per event, our configu-

ration of MAGNeT instruments the events at each protocol layer in the stack,
resulting in four events per packet (or ���	�
����
�� bytes per packet).

0

5

10

15

20

25

30

35

40

MAGNeT MAGNeT/recv MAGNeT/send tcpdump/recv tcpdump/send

Pe
rc

en
t R

ed
uc

tio
n

in
 T

hr
ou

gh
pu

t

Test Conducted

100Mb/s

1000Mb/s

Fig. 7. Percent Reduction in Network Throughput

0

10

20

30

40

50

60

70

80

90

100

110

MAGNeT MAGNeT/recv MAGNeT/send tcpdump/recv tcpdump/send

Pe
rc

en
t I

nc
re

as
e

in
 C

PU
 U

til
iz

at
io

n

Test Conducted

100Mb/s

1000Mb/s

Fig. 8. Average Percent Increase in CPU Utilization

show MAGNeT incurs less than a 5% reduction in network
throughput when magnet-read runs on either the receiver
or sender (even though the network is saturated). Furthermore,
the penalty is nearly constant regardless of network speed. In
contrast, while tcpdump incurs roughly the same penalty as
MAGNeT over 100Mbps networks, the penalty increases to
25%-35% of total throughput at 1000Mbps. Thus, MAGNeT
scales better than tcpdump with increasing link speeds.

B.2 CPU Utilization

We next compare the CPU utilization reported by netperf
under both MAGNeT and tcpdump. In Linux, netperf es-
timates CPU load by creating a low-priority process which in-
crements a counter. Since this process is the lowest priority
task in the system, the counter is only incremented when the
CPU would otherwise be idle. Thus, a low counter value im-
plies a high CPU utilization, and a high counter value implies
low CPU utilization. Using this feature in the above set of tests,
we estimate the additional CPU load incurred by both MAG-
NeT and tcpdump. The increase in CPU load for the above
tests is shown in Figure 8.

MAGNeT requires less CPU (averaged over both sender
and receiver) than tcpdump, which is not surprising since
tcpdump makes system calls from user space (thus incurring
a context switch) for every packet while MAGNeT executes
primarily within the kernel. Note that the overhead of both
MAGNeT and tcpdump appears to decrease when run on the
faster network. This is due to interrupt coalescing — the net-
work interface cards used for the 1000Mbps experiments accu-
mulate several incoming packets before interrupting the CPU.
Thus, the average overhead of servicing interrupts is greatly re-
duced. If interrupt coalescing were disabled, the average CPU
utilization for both MAGNeT and tcpdump would increase.

Finally, we mention that unlike tcpdump, the overhead of
MAGNeT can be tuned. We discuss tuning MAGNeT for spe-
cific environments in the next section.

B.3 Event Loss

Analysis of the MAGNeT-collected data of our tests reveals
that MAGNeT occasionally fails to record events at high net-
work utilization. On a saturated network, MAGNeT did not
record approximately 3% of the total events for the 100Mbps
trials, while for the 1000Mbps tests the loss rate approached
15%. These losses are due to the 256KB buffer in the kernel
filling before magnet-read is able to drain it.

Our implementation provides two methods for reducing the
event loss rate: (1) increasing the kernel buffer size and/or (2)
reducing the time magnet-read waits before draining the
kernel buffer. Figure 9 shows the effect of these parameters on
event loss rate for the 100Mbps saturated network tests. 6

Increasing the kernel buffer size dramatically reduces MAG-
NeT’s event loss rate, down to virtually no lost events under

�

All other tests discussed in this paper are conducted with MAGNeT’s de-
fault values for these two parameters.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

20
0%

L
os

t E
ve

nt
s

(P
er

ce
nt

ag
e)

Percent of default delay time

128KB
256KB
512KB

1024KB

Fig. 9. MAGNeT’s Event-Loss Rate, 100Mbs Ethernet

51

52

53

54

55

56

57

58

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

20
0%

A
ve

ra
ge

 C
PU

 L
oa

d
(S

en
d+

R
ec

v)

Percent of default delay time

128KB
256KB
512KB

1024KB

Fig. 10. MAGNeT’s Average CPU Utilization, 100Mbs Ethernet

any network load with a 1MB buffer. However, because this
buffer is pinned in memory, a large buffer also reduces the
amount of physical memory available to the kernel and applica-
tions. The default 256KB buffer size is a compromise between
CPU utilization and physical memory consumed.

Another method for reducing event loss entails adjusting the
amount of time magnet-read sleeps before draining the ker-
nel buffer. Shorter sleep times cause the buffer to be drained
more frequently, thus reducing the chance of lost events. How-
ever, shorter sleep times create more work (in terms of CPU
usage and, possibly, disk write activity), and thus may inter-
fere with the system’s normal use.

The default sleep-time is computed as the amount of time
taken to fill the kernel buffer on a saturated 100Mbps net-
work. This heuristic was chosen because it provides relatively
low event-loss rates without significantly impacting the user.
Command-line options to magnet-read allow adjustment of
the delay.

Figure 10 shows the increase in average CPU utilization for
different sleep times and buffer sizes with MAGNeT running
on the sending machine. The high CPU utilization reported in
this graph are due to our test procedure of flooding the network
with netperf, which places an unusually high load on the

system CPU. While the utilization differences appear minor,
even a small decrease in available CPU cycles can have a dra-
matic effect on application run-time and communication pat-
terns. Conversely, increased CPU utilizations result in larger
perturbations of the monitored traffic.

In all cases, the average CPU utilization of MAGNeT is less
than that of tcpdump.

By comparison, loss rates for tcpdump are significantly
higher. Under Linux, tcpdump always reports a dropped
packet count of zero, so we must estimate the true loss rate.
We use UDP traffic to arrive at our estimation. tcpdump can
record UDP packets as well as TCP, and netperf can send
UDP if requested. In addition, netperf reports the number
of packets sent, and tcpdump does accurately record the num-
ber of packets received. Thus, using UDP it is easy to compute
an average loss rate for tcpdump – the difference between the
number of packets sent by netperf and the number received
by tcpdump is the number of packets not processed (dropped)
by tcpdump. Using this estimation methodology, we obtain
average packet loss rates for tcpdump of approximately 15%
on 100Mbps networks for the conditions of our tests.

Because tcpdump does no buffering, loss rates will in-
crease as network speeds increase. In contrast, if MAG-
NeT’s loss rate is too high, it can be adjusted to an acceptable
level via the mechanisms discussed above; tcpdump lacks
such adjustability. For example, to drop MAGNeT’s loss rate
to 0.5% while using the default 256K buffer, we adjust the
magnet-read delay time to 35% of its original value (Fig-
ure 9). According to Figure 10, this increases the overall CPU
utilization from 53% to 55%. A CPU utilization rate of 55% is
still less than the 60% seen with tcpdump.

C. Streaming MAGNeT

To assess the effect of MAGNeT on streaming media, we
set up a web server on one of our test machines to stream an 8-
minute, 51-second MPEG clip of Crocodile Dundee via HTTP.
We determine the performance running in a stock configura-
tion, running with MAGNeT executing only on the server, and
running with MAGNeT executing only on the client. The re-
sults are shown in Figure 11. Since streaming MPEG clients
usually buffer data to maintain an even framerate, counting
frames per second is not a valid measure of streaming perfor-
mance. Therefore, the metric we use is total time taken for the
entire clip to be sent to the client.

MAGNeT has minimal effect on MPEG streaming. Over
100 trials, the average time to stream the movie clip on a
100Mbps network without MAGNeT is 46.02 seconds, with
a 95% confidence interval of

�
0.07 seconds. To transfer the

movie clip with MAGNeT running on the server took an aver-
age of 46.07 seconds, and with MAGNeT on the client, 46.05
seconds. (Both MAGNeT cases have a 95% confidence inter-
val of

�
0.06 seconds.)

44

44.5

45

45.5

46

46.5

47

47.5

48

0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 S

tr
ea

m
 T

im
e

(s
ec

s)

Trial Number

Without MAGNeT
MAGNeT on Server
MAGNeT on Client

Fig. 11. Streaming MAGNeT Effects

D. Network Perturbation

From the previous measurements, MAGNeT performs at
least as efficiently as tcpdump on contemporary networks and
scales more readily to higher-speed networks. Another critical
metric of application traffic monitors is the extent to which op-
eration of the monitors disturbs the traffic patterns being mon-
itored.

By adding CPU cycle-counter code aroundmagnet add()
and relevant areas of magnet-read, we can estimate the
number of cycles, on average, that MAGNeT consumes while
recording data. This value can then be compared to the mini-
mum interarrival time for packets on the physical network.

On a 100Mbps Ethernet, a 40-byte Ethernet packet —
the size of an “empty” TCP packet — will arrive no
faster than

�����
bytes ��� bits/byte �
	�� �
� Megabits/second ��������

sec. Our conservative tests indicate that magnet add()
consumes 556 cycles, on average, while recording a
packet, while magnet-read requires 425 cycles. Thus,
on our 400-MHz machines, MAGNeT takes

���������
� � � � cycles 	 ���
�
���
�����
��� cycles/second ��� ��� � �

sec to moni-
tor a single network packet. Since this is less time than a min-
imal TCP packet takes to arrive or to be sent, the MAGNeT-
induced disturbances into the traffic stream should be small.

V. IMPLICATIONS AND APPLICATIONS

We have shown that the MAGNeT toolkit provides a trans-
parent method of gathering application traffic data on individ-
ual machines. MAGNeT meets its goal of generating applica-
tion traffic pattern traces and OS protocol stack operation traces
while causing minimal interference of the patterns being mon-
itored. In this section, we provide examples of how MAGNeT-
collected information can be utilized when designing next-
generation high performance computing environments.

A. Traffic Pattern Analysis

One use of the MAGNeT toolkit is to investigate differences
between the traffic generated by an application and that same
traffic as it appears on the network (i.e., after modulation by a

0

2000

4000

6000

8000

10000

12000

60 60.2 60.4 60.6 60.8 61

Si
ze

 (
B

yt
es

)

Time (Seconds)

Delivered to network Application send() call

Fig. 12. MAGNeT FTP trace

protocol stack). As a simple example of the kind of modulation
possible, we consider a trace of a FTP session from our facility
in Los Alamos, NM to a location in Dallas, TX. A one-second
MAGNeT trace, taken one minute into the transfer, is shown in
Figure 12.

As can be seen by examining the graph, the FTP application
attempts to send 10KB segments of data every 20 milliseconds,
but the protocol stack (TCP and IP in this case) modulates
the traffic into approximately 1500 byte packets at intervals of
varying duration. Since the maximum data size on an Ethernet
network is 1500 bytes, the protocol stack segments the data to
this size. The variable spacing of the traffic intervals is caused
by TCP waiting for positive acknowledgements before sending
more traffic.

If we send the traffic stream as it was delivered to the net-
work through another TCP stack (which is done, for instance,
when conducting network simulations with tcpdump data),
we again see modulation. Each subsequent run of network-
delivered traffic through TCP further modulates the traffic, as
shown in Table II. Thus, we see that TCP significantly per-
turbs traffic patterns, even when the initial traffic pattern has
previously been shaped by TCP. This conclusion implies that
wire-level traffic traces inaccurately represent true application
networking requirements.

TABLE II

EFFECT OF MULTIPLE TCP STACKS

Trial Data Size Interpacket Spacing
(sec)

Application 3284 0.124
1st TCP stack 1016 0.045
2nd TCP stack 919 0.037
3rd TCP stack 761 0.079
4th TCP stack 723 0.122

B. Next-Generation Interconnect Design

MAGNeT gives network designers the knowledge of what
applications expect from the network. This knowledge is bene-
ficial when optimizing application communication across net-

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200

B
uf

fe
r

Si
ze

 (
B

yt
es

)

Time (Events)

Fig. 13. Size of Sending TCP Buffer

works and supercomputer interconnects. For example, con-
ventional traffic monitors (which are only capable of capturing
network-delivered traffic) would report the traffic of the FTP
session in Figure 12 to be composed of short bursts of data at
erratically spaced intervals. Communication fabrics designed
to optimize performance using that traffic pattern may not ad-
equately handle the traffic pattern intended by the application
(longer bursts of data at consistently spaced intervals). Thus,
fabrics designed by referring to traces generated by traditional
network monitors fail to meet the true needs of the application.

Traces generated by MAGNeT provide a realistic picture of
the protocol-independent traffic demands of applications run-
ning on today’s networks. Thus, MAGNeT provides network
developers with a better understanding of the requirements of
future networks and high-performance cluster interconnects.

C. Resource Management

With the optional data filed compiled in, MAGNeT can re-
turn snapshots of the complete protocol state, information pre-
viously only available under simulation environments, during
execution of real applications on live networks. This kind of
data is invaluable when planning proper resource allocation on
large computing systems.

For example, Figure 13 shows the size of the sending TCP
buffer during the MAGNeT streaming trials discussed in Sec-
tion IV-C. This buffer contains data recorded as “sent” by the
application, but not yet actually delivered to the network by
TCP. The buffer reaches a maximum size of around 30KB, but
averages 6.5KB for the life of the connection. With this kind
of information, a resource allocation strategy which conforms
to the true needs of applications may be developed.

D. Network-Aware Application Development

As discussed in Section II, MAGNeT captures data which
network-aware applications can use to appropriately tune their
performance. In our implementation, any application is able
to open the MAGNeT device file and map a portion of their
memory space to the MAGNeT data collection buffer. Thus,
an daemon may be developed which monitors the MAGNeT

collected data and provides a summary of the data for specific
connections at the request of network-aware applications. This
strategy consolidates all network monitoring activity to amor-
tize the overhead across all network-aware applications run-
ning on the system.

VI. FUTURE WORK

Our implementation of MAGNeT can be improved in several
ways. We would like to allow the user to set various MAG-
NeT parameters (e.g., the kinds of events to be recorded, the
size of the kernel buffer, etc.) at run-time rather than at ker-
nel compile-time. Allowing run-time user configuration of the
MAGNeT toolkit could be accomplished by making the current
/proc file writable. Run-time configuration would greatly in-
crease the usability and flexibility of the MAGNeT toolkit.

Another potential area of improvement in MAGNeT is the
mechanism used to store recorded data from the kernel buffer
to disk. Rather then have a user-level process, a better ap-
proach may be to utilize kernel threads to perform all steps
of the instrumentation. With this methodology, the need for
the special device file, the file created by mkmagnet, and the
kernel/user shared memory would be eliminated. In addition,
kernel threads may lower MAGNeT’s already low event loss
rate by eliminating the overhead of magnet-read. However,
implementing kernel threads may impede exporting real-time
data to network-aware applications. The use of kernel threads
may be explored for future versions of MAGNeT.

Timing with CPU cycle counters can be problematic on con-
temporary CPUs which may change their clock rate accord-
ing to power management policies. If the kernel detects such
changes, MAGNeT could easily hook into the clock-rate detec-
tion code and output new MAGNET SYSINFO events. These
events, containing new timing information, would allow cor-
rect post-processing in spite of CPU clock-rate changes. How-
ever, current Linux production kernels are unable to detect
CPU clock rate changes at run-time. We do not consider this a
serious problem as the MAGNeT toolkit is intended to be used
primarily on high-performance computing systems which are
unlikely to lower clock rates at run-time.

For applications which are compiled to use system shared li-
braries (rather than statically-compiled libraries), an alternative
method of gathering application traffic patterns is to provide a
shared library which instruments network calls before passing
the calls on to the original system library. Since MAGNeT
records network call events only within the kernel, the use of
such an instrumented library (which records application events
in user space, before any context switch) is complimentary to
the approach taken in MAGNeT. Using such a library in con-
junction with MAGNeT would allow system call overhead to
be quantified while still requiring no change to applications.

VII. CONCLUSION

Current traffic libraries, network traces, and network mod-
els are based on measurements made by tcpdump (or similar

tools such as CoralReef). These tools do not capture an ap-
plication’s true traffic demands; instead they capture an appli-
cation’s demands after having been modulated by the protocol
stack. Therefore, existing traffic libraries, network traces, and
network models cannot provide protocol-independent insight
into the actual traffic patterns of an application.

Information regarding the networking needs of applications,
as well as the operation of network protocol stacks, is essen-
tial to the construction of modern high-performance computing
systems. Current network trace generation tools and archives
are inadequate for this purpose. Designers and researchers are
left with no substantive data regarding the networking needs of
applications.

The MAGNeT toolkit fills the void by providing a flexi-
ble and low-overhead infrastructure to monitor network traf-
fic anywhere in the protocol stack. The MAGNeT architecture
provides a framework for generating a new kind of network
traffic trace, giving high-performance computer designers and
implementers new insight into potential bottlenecks of next-
generation machines.

AVAILABILITY

The MAGNeT toolkit (the Linux 2.4 kernel patch, the user-
application programs, and supporting material) is available
from our website, http://www.lanl.gov/radiant. Other docu-
ments relating to MAGNeT may also be found on our website.

REFERENCES

[1] “The Beowulf Project,” http://www.beowulf.org.
[2] “Accelerated Strategic Computing Initiative,” http://www.asci.

doe.gov/index.htm.
[3] “Distributed Systems Department,” http://grid.lbl.gov.
[4] “Grid Computing Info Centre,” http://www.gridcomputing.

com.
[5] E. Weigle and W. Feng, “A Case for TCP Vegas in High-Performance

Computational Grids,” Proc. of the 10th Annual Int’l Symposium on High
Performance Distributed Computing, August 2001.

[6] “tcpdump,” http://www.tcpdump.org.
[7] CAIDA, “CoralReef Software Suite,” http://www.caida.org/

tools/measurement/coralreef.
[8] “The Internet Traffic Archive,” http://ita.ee.lbl.gov/html/

traces.html.
[9] A. Kato, J. Murai, and S. Katsuno, “An Internet Traffic Data Repository:

The Architecture and the Design Policy,” in INET’99 Proceedings.
[10] P. Tinnakornsrisuphap, W. Feng, and I. Philp, “On the Burstiness of the

TCP Congestion-Control Mechanism in a Distributed Computing Sys-
tem,” in Proc. of the Int’l Conf. on Dist. Comp. Sys., April 2000.

[11] W. Feng and P. Tinnakornsrisuphap, “The Adverse Impact of the TCP
Congestion-Control Mechanism in Heterogeneous Computing Systems,”
in Proc. of the Int’l Conf. on Parallel Processing, August 2000.

[12] W. Feng and P. Tinnakornsrisuphap, “The Failure of TCP in High-
Performance Computational Grids,” in Proc. of SC 2000: High-
Performance Networking and Computing Conf., November 2000.

[13] J. Semke, “PSC TCP Kernel Monitor,” Tech. Rep. CMU-PSC-TR-2000-
0001, PSC/CMU, May 2000.

[14] J. Bolliger and R. Gross, “Bandwidth Monitoring for Network-Aware
Applications,” Proc. of the 10th Annual Int’l Symposium on High Per-
formance Distributed Computing, August 2001.

[15] “Netperf,” http://www.netperf.org.

